Root Rot in Pulse Crops

Dr. Sabine Banniza, Professor, Crop Development Centre
Faye Dokken-Bouchard, Provincial Specialist Plant Disease, Saskatchewan Ministry of Agriculture
Sherrilyn Phelps, Saskatchewan Pulse Growers
Disease Triangle

Host(s)

Pathogen(s)

Environment
Root Rot Pathogens
Root Rot Pathogens

Fusarium
Pythium
Rhizoctonia
Aphanomyces

Root Rot Complex

- Can infect plant at anytime (not just at seedling stage)
- Later infections are not as visible in the field but result in lodging and harvest difficulties
Root rot pathogens

True fungi
- *Fusarium* spp.
- *Rhizoctonia solani*

Fungus-like organisms
- *Pythium* spp.
- *Aphanomyces euteiches*

• Saskatchewan samples analyzed to date always revealed *Fusarium* spp., in many cases *Aphanomyces euteiches*, and sometimes *Rhizoctonia* and *Pythium*
- *Fusarium* spp. common
- Same pathogen that causes FHB and others
Disease indicator for 2014 - Fusarium in wheat

PERCENT TOTAL FUSARIUM
ON CEREALS TESTED AT
SASKATCHEWAN SEED LABS - 2014

* indicates figure based on <10 samples.

PERCENT TOTAL FUSARIUM
ON CEREALS TESTED AT
SASKATCHEWAN SEED LABS - 2013

* indicates figure based on <10 samples.
Aphanomyces euteiches

- Reports on *Aphanomyces* spp. in Canada since 1938
- First confirmed report in SK in 2012
- 2014 widespread identification in soil and plant roots across SK
- Therefore, has been here but conditions weren’t favoring build of pathogen or infections until recently

Data from CDC, Discovery Seed & SK Agric. Crop Protection Labs
Aphanomyces euteiches

• Belongs to the ‘water moulds’ like Pythium (fungus-like)
• Survival of oospores in the soil without a host for up to 20 years
• Is mobile (zoospores) and can move with the water
• No chemical controls to date
Root Rot Pathogen Host Range

Species with a wider host range

– *Fusarium* spp. (e.g. *solani*, *avenaceum*, *acuminatum*, *graminearum*)
– *Rhizoctonia solani*
– *Pythium* spp.

Relatively host-specific species:

– *Fusarium oxysporum* f.sp. *pisi* or f. sp. *lentis*
– *Aphanomyces euteiches*
<table>
<thead>
<tr>
<th>Organism</th>
<th>Temperature optimums (°C)</th>
<th>Moisture favouring severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphanomyces</td>
<td>22 to 27</td>
<td>Excessive</td>
</tr>
<tr>
<td>Fusarium</td>
<td>25 to 30</td>
<td>Moderate</td>
</tr>
<tr>
<td>Pythium</td>
<td>17 to 23</td>
<td>Wet</td>
</tr>
<tr>
<td>Rhizoctonia</td>
<td>Can damage at 18 but most aggressive at 24 to 30</td>
<td>Wide range of conditions</td>
</tr>
</tbody>
</table>
Fusarium

Photo courtesy of F. Dokken-Bouchard, SMA

Photo courtesy of Dr. B. Gossen, AAFC Saskatoon
Aphanomyces infected vs healthy roots

Photo courtesy of C. Armstrong-Cho
Normal watering conditions
Fusarium vs Aphanomyces

Photo courtesy of Dr. S. Chatterton, AAFC Lethbridge
Aphanomyces Distribution in Soil

- Most concentrated at 10 to 40 cm depth in France (present in 0 to 60 cm)
- Initial study at U of S confirmed aphanomyces at 0 to 30 cm in SK (only went to 30 cm depth)
- Variable across fields and in soil profile

Dawson Detwiller: Dr. Sabine Banniza undergrad student fall 2014
Summary of root rot pathogens

• Root rot complex (Fusarium, Pythium, Rhizoctonia, Aphanomyces)

• Aphanomyces is a new issue to Sask
 – No chemical controls, very long lived, needs water
Environment
Weather patterns

2009 - last year of normal to dry conditions

2010 - 2013 – 2 years wet spring, 2 ave to wet
Forecast for 2015: Western Producer January 29

Spring planting conditions April-May 2015

Summer weather conditions June - August 2015

Source: Drew Lerner, World Weather | MICHELLE HOULDEN GRAPHIC
Symptoms... of disease or stress?

- Stunting
- Yellowing
- Poor root growth
- Little nodulation
- Browning of root area

Photo courtesy of S. Phelps, SPG
• Peas and lentil do not like wet feet
• A pea or lentil plant in wet soil is a stressed plant even without presence of pathogen

Peas grown in **sterile field soil**: left normal watering, right waterlogged conditions

Photo courtesy of Dr. Sabine Banniza, CDC
Waterlogged, sterilized vs. Waterlogged, unsterilized
Some fields – certain areas affected

Photo courtesy of Dr. S. Chatterton
Field edges – why?

Photo courtesy of S. Phelps, SPG
What are these paths from?

Photo courtesy of Dr. Sabine Banniza, CDC
Environment affects severity

Increased severity

- Wet condition or high moisture holding capacity
 - Heavier land
 - Compacted areas
 - Wetter areas of field (side hill seeps)

Good Fields

- Drier (better drainage)
 - Lighter land
 - Less compaction
Hosts
2010 - peas

2010 - canola

Photo courtesy of S. Phelps, SPG
Rotation

Photo courtesy of Dr. S. Chatterton

Peas >4 yrs ago

2010 - peas
Crop & Variety

• All pulse crops susceptible to root rot organisms (Fusarium, Pythium, Rhizoctonia)
• Soybean, fababean & chickpea have good resistance to aphanomyces compared pea and lentil
Varietal differences in resistance: Lentil

Disease severity (0-5)

- IG72815
- L01-827A
- CDC Dazil
- Eston
- CDC Greenland
- CDC Imax
- CDC Impact
- CDC Impower
- CDC Invincible
- CDC KR-1
- CDC Maxim
- CDC Redberry
- CDC Robin
- CDC Viceroy
- CDC Frontier
- CDC Meadow
Alternative pulse crops: Chickpea

- Good partial resistance to aphanomyces root rot
- Suitable for the brown and dark brown soil zone
- Ascochyta blight
 - Requires early fungicide application

www.saskpulse.com
www.agr.gov.sk.ca/chickpea-ascochyta
Alternative pulse crop: Faba bean

Dr. Sabine Banniza, CDC
Alternative pulse crops:
Faba bean

- Tolerant to wet soils and aphanomyces
- Foliar diseases:
 - Ascochyta blight
 - Chocolate spot (*Botrytis*)
 - Anthracnose

http://www.agriculture.gov.sk.ca/crops/Faba_Bean
Alternative pulse crops: Soybean

• Good tolerance to wet conditions
• Markets well developed
• Warm season crop

www.agriculture.gov.sk.ca
Resistance in pea to Aphanomyces root rot

• Extensive screening in France and USA
• USDA lines received by CDC (shown here)
• French lines currently not available until released to their farmers first
Resistance in lentil

• Preliminary testing of CDC interspecific lentil populations (*Lens ervoides*) showed some with moderate resistance (scored 3)
• Still to evaluate current varieties in SK

<table>
<thead>
<tr>
<th>Parents/Lines</th>
<th>Disease reactions</th>
<th>Parents/Lines</th>
<th>Disease reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-LR26-Eston</td>
<td>5</td>
<td>P-LR59-Eston</td>
<td>5</td>
</tr>
<tr>
<td>P-IG 72815</td>
<td>3</td>
<td>P-L01827 A</td>
<td>3</td>
</tr>
<tr>
<td>LR26-12</td>
<td>7</td>
<td>LR59-4</td>
<td>3</td>
</tr>
<tr>
<td>LR26-19</td>
<td>7</td>
<td>LR59-10</td>
<td>3</td>
</tr>
<tr>
<td>LR26-20</td>
<td>5</td>
<td>LR59-14</td>
<td>9</td>
</tr>
<tr>
<td>LR26-183</td>
<td>9</td>
<td>LR59-23</td>
<td>5</td>
</tr>
<tr>
<td>LR26-187</td>
<td>5</td>
<td>LR59-27</td>
<td>5</td>
</tr>
<tr>
<td>LR26-216</td>
<td>3</td>
<td>LR59-29</td>
<td>5</td>
</tr>
<tr>
<td>LR26-220</td>
<td>5</td>
<td>LR59-55</td>
<td>5</td>
</tr>
<tr>
<td>LR26-240</td>
<td>5</td>
<td>LR59-62</td>
<td>7</td>
</tr>
<tr>
<td>LR26-241</td>
<td>9</td>
<td>LR59-76</td>
<td>5</td>
</tr>
<tr>
<td>LR26-253</td>
<td>3</td>
<td>LR59-81</td>
<td>5</td>
</tr>
<tr>
<td>LR26-274</td>
<td>9</td>
<td>LR59-86</td>
<td>7</td>
</tr>
<tr>
<td>LR26-281</td>
<td>7</td>
<td>LR59-90</td>
<td>5</td>
</tr>
<tr>
<td>LR26-290</td>
<td>5</td>
<td>LR59-126</td>
<td>5</td>
</tr>
<tr>
<td>LR26-293</td>
<td>9</td>
<td>LR59-127</td>
<td>9</td>
</tr>
<tr>
<td>LR26-300</td>
<td>7</td>
<td>LR59-133</td>
<td>7</td>
</tr>
</tbody>
</table>

Dr. Sabine Banniza, CDC
Planning for 2015

Pathogen(s)

Environment

Host(s)
Prevention: Host Choice & Health

Rotation – pea/lentil once every 4 yrs (6+ if aphanomyces)

Test seed – Germ & quality, disease levels

Seed treatment
- Cool soils
- Proper method of application
- Only effective for 3-4 weeks

<table>
<thead>
<tr>
<th>Pathogen (Disease)</th>
<th>Seed Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pythium spp.</td>
<td>Allegiance FL® (metalaxyl S)</td>
</tr>
<tr>
<td>(Seed rot and damping off)</td>
<td>Belmont 2.7 FS® (metalaxyl S)</td>
</tr>
<tr>
<td>Use seed treatment if history of disease: seeding under cool/moist conditions</td>
<td>Agro FL® (capitan)</td>
</tr>
<tr>
<td></td>
<td>Apron Advance® (fluoxonil C metalaxyl-M S and thiabendazole)</td>
</tr>
<tr>
<td></td>
<td>Apron Maxx RTA/RFC® (fluoxonil C, metalaxyl-M S)</td>
</tr>
<tr>
<td>Botrytis, Sclerotinia, and Fusarium</td>
<td>Cruiser Maxx Pulses® (thiamethoxam insecticide, fluoxonil C and metalaxyl-M fungicides)</td>
</tr>
<tr>
<td>(Seed rot and seedling blight)</td>
<td>Evergo Energy® (penflufen, prothioconazole and metalaxyl)</td>
</tr>
<tr>
<td>Use seed treatment if pathogen detected over 10% on seed</td>
<td>Thiram (thiram²)</td>
</tr>
<tr>
<td></td>
<td>Trilox AL® (trifloxystrobinC and metalaxylS)</td>
</tr>
<tr>
<td></td>
<td>Vibrance Maxx RTA/RFC® (fluoxonil, metalaxyl-M and selenoxane)</td>
</tr>
<tr>
<td>Rhizoctonia solani</td>
<td>Vitaflor® products® (carbathiin and thiram)</td>
</tr>
<tr>
<td></td>
<td>Crown® (carbathiin S, thiabendazole S, C)¹</td>
</tr>
<tr>
<td></td>
<td>Cruiser Maxx Pulses® (thiamethoxam insecticide, fluoxonil C and metalaxyl-M S fungicides)</td>
</tr>
<tr>
<td>Aphanomyces euteiches</td>
<td>Evergo Energy® (penflufen, metalaxyl, and prothioconazole)</td>
</tr>
<tr>
<td></td>
<td>Vitaflor products® (carbathiin and thiram)</td>
</tr>
<tr>
<td></td>
<td>None registered</td>
</tr>
</tbody>
</table>

¹: Registered for S. cerevisiae
²: Registered for S. cerevisiae and S. pasteurianum
Prevention: Field Choice

Field selection – lighter land with good drainage

Avoid compacted areas or manage compaction

Fertility – know nutrient status & correct if needed
Prevention: Plant Health

• Healthy seedlings = better able to withstand infections or recover from stress
• Proper *inoculant* and good application methods
• Minimize damage to seed through air systems and in handling
• Roll under appropriate conditions (not wet)
• Monitor for signs of stress
• Follow herbicide labels

Photo courtesy of S. Phelps, SPG
Prevention

1. Rotation
2. Field choice
3. Fertility
4. Seed testing/trtmnts
5. Maximize seedling vigor
6. Monitor

<table>
<thead>
<tr>
<th>Choices</th>
<th>Options for Reducing Risk of Root Rots</th>
</tr>
</thead>
</table>
| **Field Choice** | - Lighter textured soils (sandier) with good drainage
| | - Out of peas/lentils for at least three years (four year rotation) and maybe up to six years if Aphanomyces positively identified |
| | - Manage or avoid compacted fields or areas |
| **Soil Testing and Fertility** | - Apply nutrients as needed
| | - Starter nitrogen if soils <15 lbs/acre available nitrogen in top 12 inches
| | - Phosphorous if seeding early into cool soils
| | - Other nutrients only if deficient
| | - Know the safe rates of nutrients that can be safely seed placed |
| **Seed Testing** | - Plant good quality seed |
| **Seeding Decisions** | - Apply seed treatments as warranted for seed borne disease or if planting early into cool soils (see next table) |
| **After Seeding** | - Use appropriate inoculant and good application methods
| | - Choose more resistant crops - fababean, chickpea, and soybean (only for Aphanomyces root rot)
| | - Minimize seed damage and watch airspeed of seeder
| | - Seed into warm moist soil – the quicker the emergence the more vigorous the seedlings |
| | - Monitor crop for signs of stress
| | - Follow herbicide labels - increased injury can occur when plants are stressed |
Diagnosis

<table>
<thead>
<tr>
<th>Lab</th>
<th>Location</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery Seed Lab</td>
<td>Saskatoon</td>
<td>www.seedtesting.com</td>
</tr>
<tr>
<td>BDS Labs</td>
<td>Qu’Appelle</td>
<td>www.bdslabs.com</td>
</tr>
<tr>
<td>20/20 Seed Labs</td>
<td>Nisku</td>
<td>www.2020seedlabs.ca</td>
</tr>
<tr>
<td>Crop Protection Lab</td>
<td>Regina</td>
<td>www.agriculture.gov.sk.ca/Crop_Protection_Lab</td>
</tr>
</tbody>
</table>

Individual labs may differ in testing methods and sample requirements. Please check with lab prior to sending samples.
More Root Rot Information

Root rot document: www.saskpulse.com

Contact:
Saskatchewan Ministry of Agriculture, U of S Crop Development Centre, or Saskatchewan Pulse Growers
A successful 2015!