APHANOMYCES ROOT ROT IN PEAS AND LENTILS in Western Canada
ROOT ROTS

Root rot in peas and lentils is caused by a complex of diseases that affect the belowground portion of the developing plant, leading to poor performing pulse crops. The organisms that cause the disease are seed- or soil-borne and can infect the plant at any stage. Unfortunately, once root rot has set in, there is nothing that can be done. Understanding the disease, identifying the risks for root rot infection, and thorough planning for prevention are the only current options.

Aphanomyces Root Rot

DNA testing conducted on root rots in Alberta, Manitoba and Saskatchewan in 2017 (see survey results below), show that Aphanomyces is a common cause of root rots in pulse crops in the Prairies. Aphanomyces can infect at any time in the growing season and spores persist for many years in the soil, making it the most difficult cause of root rot to manage (and therefore the most serious among the root rot pathogens). While research is being undertaken in Alberta, Manitoba and Saskatchewan, there is currently no reliable prevention or cure.

Aphanomyces root rot causes severe damage to the roots, causing infected plants to wilt and die prematurely. In wet years, high yield loss in peas has been observed under high Aphanomyces root rot infections.

Aphanomyces root rot is caused by Aphanomyces euteiches, a highly specialized pathogen of legumes. While this pathogen has a number of legume host plants, peas and lentils are the most susceptible pulse crops to infection. Faba beans and sainfoin exhibit good partial (quantitative) resistance to Aphanomyces, and chickpeas are considered moderately resistant. Soybeans and fenugreek are both non-host crops to A. euteiches.

Susceptibility of dry beans and alfalfa to Aphanomyces root rot infection varies among the different varieties. Cicer milkvetch is also very susceptible to infection by Aphanomyces.

2017 Root Rot Survey Results

Researchers in Alberta, Manitoba and Saskatchewan have been conducting surveys to assess presence of root rot and levels of severity.

Percentage of Fields Testing Positive for Specific Root Rot Pathogens in 2017 Using DNA Testing

<table>
<thead>
<tr>
<th>Location</th>
<th>Crop</th>
<th>Number of Fields Tested</th>
<th>Aphanomyces euteiches</th>
<th>Pythium ultimum</th>
<th>Pythium irregulare</th>
<th>Fusarium avenaceum</th>
<th>Fusarium solani</th>
<th>Fusarium redolens</th>
<th>Fusarium culmorum</th>
<th>Fusarium graminearum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberta</td>
<td>Peas</td>
<td>145</td>
<td>40</td>
<td>18</td>
<td>43</td>
<td>86</td>
<td>55</td>
<td>79</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Lentils</td>
<td>17</td>
<td>0</td>
<td>19</td>
<td>50</td>
<td>75</td>
<td>19</td>
<td>100</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>Saskatchewan</td>
<td>Peas</td>
<td>88</td>
<td>40</td>
<td>37</td>
<td>46</td>
<td>92</td>
<td>58</td>
<td>88</td>
<td>43</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Lentils</td>
<td>82</td>
<td>22</td>
<td>21</td>
<td>51</td>
<td>84</td>
<td>22</td>
<td>83</td>
<td>29</td>
<td>26</td>
</tr>
<tr>
<td>Manitoba</td>
<td>Peas</td>
<td>31</td>
<td>45</td>
<td>16</td>
<td>39</td>
<td>90</td>
<td>71</td>
<td>93</td>
<td>19</td>
<td>32</td>
</tr>
</tbody>
</table>

1 Only fields that showed a disease severity > 3 in the surveys were tested for pathogen composition.
2 These tests are being repeated, results only show fields that had a strong positive reaction to Aphanomyces euteiches.
Number may be higher when considering fields with lower inoculum levels that gave a weak positive result.

Source: Syama Chatterton, Agriculture and Agri-Food Canada
RISK FACTORS FOR ROOT ROT

Stress factors that delay germination, as well as slow emergence and growth of plants contribute to an increased risk of root rot infection.

These include:
- Wet conditions
- Cool temperatures early in the season
- Shortened rotations
- Heavy textured soils
- Soil compaction
- Nutrient deficiency
- Herbicide residues
- Low seed vigour

Key Facts
- Plant roots and nitrogen fixing bacteria need oxygen. When the soil is saturated, roots function poorly, and rhizobia activity is reduced, resulting in yellow growth.
 - Cool conditions slow seedling metabolism and root growth. This also slows mineralization of nitrogen from organic matter.
- Plants that are stressed or have low vigour are more susceptible to seedling diseases.
- Seed treatments are ineffective past the seedling stage and foliar fungicides will not work on root diseases.
- Root rots tend to be more severe under waterlogged conditions. However, root rots can occur even under ideal or drier moisture conditions.
- Crops can also appear yellow and stunted due to wet feet regardless of pathogen pressure.

Heavy Disease Pressure
- When a pathogen is able to build up in the soil due to conditions favourable for its development in consecutive seasons (such as waterlogging and tight rotations), the pathogen may continue to cause issues even when conditions return to "normal" or ideal for crop production.

More Than One Susceptible Crop
- The root rot pathogen can infect various crops in the rotation, or survive as a saprophyte (feeding on dead plant material) until the next susceptible crop is grown, and/or conditions are favourable for disease.

Right: Honey-brown discolouration of pea roots, characteristic of *Aphanomyces euteiches*. Other symptoms include yellowing and wilting of lower leaves, discoulouration of roots - watery and honey-brown/caramel coloured, poor lateral root growth with minimal root hairs, and pinching of epicotyl stops at soil surface.

Source: Syama Chatterton, Agriculture and Agri-Food Canada
Aphanomyces euteiches is classified as an oomycete, or water mould, and is not a true fungus. The resting spores, called oospores, are thick-walled and allow the pathogen to survive in the soil during harsh winter conditions. Aphanomyces has been found to spread from the roots of a single infected plant to the roots of healthy neighbouring plants up to 18 cm away.

Roots of host plants infected with Aphanomyces root rot become soft and have a water-soaked, honey-brown or caramel-coloured appearance. Infections begin on the lateral roots, then spread to the main root, and eventually into the epicotyl, stopping where the green stem tissue begins. At this time, infected plants start to turn pale in colour and are especially noticeable when beside healthy plants. Yellow areas in the crop may begin to appear, although distinct patches are not always seen, and it is possible to see healthy plants right beside infected plants. As the season progresses and conditions remain favourable, the main root typically becomes colonized by other pathogens and turns dark brown to black.

The most severe symptoms and crop yellowing are seen when Aphanomyces is present alongside other pathogens, with Fusarium being the most common. Symptoms of Aphanomyces root rot are not always clear-cut because in most cases, a pathogen complex exists. It can be difficult to see the honey-brown root discolouration of Aphanomyces when Fusarium is also present. At advanced Aphanomyces root rot infection stages, only the vascular bundles remain, as the entire root system has decayed and plants are chlorotic, wilted, and will prematurely die.

Aphanomyces symptoms appear within 7-14 days after the first root infection, depending on soil moisture and temperature, and susceptible host plants can become infected at any growth stage. Even though root infections are favoured by wet conditions, the symptoms and yield impact are most severe under warm, dry conditions after infection takes place.

Severe root rot caused by Aphanomyces impairs the uptake of water and nutrients by infected plants. Yield loss from Aphanomyces root rot can be difficult to assess because of the numerous indirect effects it has on the crop, as well as the timing of the initial infection. Early season infections cause plants to die prematurely, causing a direct and substantial yield loss. Later season infections can delay crop maturity, thereby affecting harvest timing, and also weaken the plant stems, causing severe lodging and harvest challenges. Research has reported reductions in both pod size and seed number, as well as decreased seed quality due to Aphanomyces root rot. A thin crop stand can also cause challenges in weed management as weed competition can negatively impact yield, affect harvestability, cause increased dockage at the elevator, and contribute to the weed seed bank in the soil.

High soil moisture caused from excessive rainfall, poor soil drainage, soil compaction, and/or heavy clay soils (35-40% clay content) will favour Aphanomyces root rot development, although it can occur in any soil type. High soil moisture caused from excessive rainfall, poor soil drainage, soil compaction, and/or heavy clay soils (35-40% clay content) will favour Aphanomyces root rot development, although it can occur in any soil type.

Aphanomyces Scale

Examples of the Aphanomyces root rot rating scale.
0 = No symptoms.
3 = Start to see discolouration of crown/epicotyl. 50 to 75% of the roots have browning.
4 = Honey-brown epicotyl/crown area. 100% of the roots are brown and first leaves are dying off.
5 = Plant is dead. Decay and loss of all roots and usually only vascular string remains. Honey-brown epicotyl/crown area.

Source for all photos on page: Syama Chatterton, Agriculture and Agri-Food Canada
ROOT ROT DIAGNOSIS

An accurate diagnosis of root rot aids future crop management decisions. Results may reveal trends among varieties and management practices that affect the soil or other inputs and stresses.

Information to Gather for Diagnosis and Discussions

<table>
<thead>
<tr>
<th>Field History</th>
<th>Crop rotation, last year in pulses, number of pea or lentil cycles.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbicide History</td>
<td>Herbicides used throughout the year and past history.</td>
</tr>
<tr>
<td>Environment</td>
<td>Moisture situation leading up to the problem including previous year(s).</td>
</tr>
<tr>
<td>Soil Information</td>
<td>Texture, organic matter, pH, signs of compaction, flooding or water runs.</td>
</tr>
<tr>
<td>Seeding Information</td>
<td>Variety, seeding date, seeding depth, seed treatments, inoculant, fertilizer amount and placement as applicable.</td>
</tr>
<tr>
<td>Field Information and Maps</td>
<td>Legal land location, map of good and bad areas, notes on topography and patterns in the field where symptoms are present and not present. Mark waterways, side hill seeps, heavier soil, etc.</td>
</tr>
<tr>
<td>Patterns in Field</td>
<td>Note any patterns that may be visible. Patterns may relate to equipment such as misses, overlap areas, swath and chaff rows from harvest, and compacted areas. Note seeding and sprayer direction. Patterns may also relate to other factors such as field edges.</td>
</tr>
<tr>
<td>Photo and Samples</td>
<td>Good photos are critical. Aerial photos are great for identifying patterns. Collect plant and soil samples from both good and bad areas for analysis.</td>
</tr>
</tbody>
</table>

Send Samples to a Lab

Diagnostic laboratories are able to examine freshly infected roots for spores, plate samples for fungal identification, or confirm disease using DNA testing. The following labs offer analysis for root rot pathogens:

BDS Laboratoires – Qu’Appelle, SK
306-699-2679
bdslabs.com

BioVision Seed Labs – Sherwood Park, AB
1-800-952-5407
biovision.ca

Discovery Seed Labs Ltd. – Saskatoon, SK
306-249-4484
seedtesting.com

20/20 Seed Labs Inc. – Nisku, AB & Winnipeg, MB
1-877-420-2099
2020seedlabs.ca

Individual labs may differ in testing methods and sample requirements. Please check with the lab prior to sending samples.
Lab offers DNA test for Aphanomyces
In the case of *Aphanomyces*, it is important not to grow a susceptible host for a minimum of six years. *Aphanomyces* can infect peas, lentils, alfalfa, dry beans and possibly some of the native weedy legume species. Faba bean and chickpea varieties with partial resistance can be used to maintain pulse crops in rotation. Soybeans are another option for a nitrogen fixing crop that is resistant to *Aphanomyces*.

Peas and lentils fix their own nitrogen but until the nodules form, the crop relies on soil nitrogen. Starter nitrogen is not usually recommended with peas and lentils, as extra nitrogen can delay nodulation and maturity. However, under conditions where soils are low in nitrogen (less than 15 lb/ac in the top 12 inches) at the start of the season, an application of 10-20 lbs of nitrogen may be beneficial. As a general rule, if soil tests indicate more than 20 lb/ac of nitrate nitrogen, then no additional nitrogen is needed. If below 15 lb/ac, then consider starter nitrogen.

Phosphorous is important for good root development and to support the nitrogen fixation process. Good phosphorus levels are important for early growth, especially under cool conditions associated with early seeding. Maximum safe rates of seed placed phosphorus are 20-25 lb/ac for lentils and 15-20 lb/ac for peas based on narrow opener (15% seedbed utilization), and good moisture conditions. If higher phosphorus rates are required, banding fertilizer away from the seed is the best strategy.

OPTIONS FOR REDUCING RISK OF ROOT ROTS

<table>
<thead>
<tr>
<th>CHOICES</th>
<th>OPTIONS FOR REDUCING RISK OF ROOT ROTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Choice</td>
<td>• Lighter textured soils (sandier) with good drainage</td>
</tr>
<tr>
<td></td>
<td>• No peas/lentils for at least three years (four year rotation) and up to six years if Aphanomyces positively identified</td>
</tr>
<tr>
<td></td>
<td>• Manage or avoid compacted fields or areas</td>
</tr>
<tr>
<td>Soil Testing and Fertility</td>
<td>• Apply nutrients as needed</td>
</tr>
<tr>
<td></td>
<td>• Starter nitrogen if soils <15 lb/ac available nitrogen in top 12 inches</td>
</tr>
<tr>
<td></td>
<td>• Phosphorous if seeding early into cool soils</td>
</tr>
<tr>
<td></td>
<td>• Other nutrients as required</td>
</tr>
<tr>
<td></td>
<td>• Know the safe rates of nutrients that can be safely applied</td>
</tr>
<tr>
<td>Seed Testing</td>
<td>• Plant good quality seed</td>
</tr>
<tr>
<td></td>
<td>• Apply seed treatments as warranted for seed-borne disease or if planting early into cool soils</td>
</tr>
<tr>
<td>Seeding Decisions</td>
<td>• Use appropriate inoculant and good application methods</td>
</tr>
<tr>
<td></td>
<td>• Choose more resistant pulse crop options – faba bean, chickpea and soybean (only for Aphanomyces)</td>
</tr>
<tr>
<td></td>
<td>• Minimize seed damage and watch airspeed of seeder</td>
</tr>
<tr>
<td></td>
<td>• Seed into warm moist soil – the quicker the emergence the more vigorous the seedlings</td>
</tr>
<tr>
<td>After Seeding</td>
<td>• Monitor crop for signs of stress</td>
</tr>
<tr>
<td></td>
<td>• Follow herbicide labels – increased injury can occur when plants are stressed</td>
</tr>
</tbody>
</table>
Root rot pathogens can be controlled to a certain degree using seed treatments. However, fungicidal effects will only last two to three weeks against early season disease pressure. Making informed decisions before root rot symptoms appear is the best option. Once the seed is in the ground, it is important to monitor plant health by checking above and belowground portions of the plant throughout the season. When determining the economic threshold for utilizing a seed treatment, consider conducting a soil test if the field has a disease history.

DISEASE (PATHOGEN) SEED TREATMENTS

Pythium
(seed rot and damping off)
- Use seed treatment if field has a history of disease and/or seeding under cool/wet conditions
 - Metalaxyl
 - Intego™ Solo (ethaboxam)

Botrytis, Fusarium, Pythium, Rhizoctonia solani
(Seed rot and seedling blight)
- Use seed treatment if levels of **Botrytis** or **Fusarium** on seed total 10% or more
- Use seed treatment if field has a history of disease and/or seeding under cool/wet conditions
 - Agrox FL (captan)
 - Apron® Advance (fludioxonil, metalaxyl, thiabendazole)
 - Apron® Maxx RTA/RF (fludioxonil, metalaxyl)
 - Cruiser Maxx® Pulses (thiamethoxam, fludioxonil, metalaxyl)
 - EverGol® Energy (penflufen, prothiconazole, and metalaxyl)
 - Insure® Pulse (metalaxyl, fluxapyroxad, pyraclostrobin)
 - Thiram (thiram)
 - Trilex® AL (trifloxystrobin, metalaxyl)
 - Trilex® EverGol (penflufen, trifl.xy strobin, metalaxyl)
 - Vibrance® Maxx (fludioxonil, metalaxyl, sedaxane)
 - Vitafl® products (carbathiiin, thiram)

Aphanomyces
- Intego™ Solo (ethaboxam)

1 **Intego™ Solo is registered for lentil and pea. Check the label for other pulse crops.**
2 **Thiram is registered for pea but not registered for lentil**
3 **Includes Vitafl® 280, Vitafl® Fungicide, and Vitafl® SP**

Always refer to product labels before application. Review the most recent provincial Ministry of Agriculture’s Guide to Crop Protection for more information on seed treatments.
ROOT ROT RESEARCH

Alberta Pulse Growers, Manitoba Pulse & Soybean Growers and Saskatchewan Pulse Growers have each invested a significant amount of money and resources into root rot research. Please visit each organization’s website to see the latest information.